
Biting into the
forbidden fruit

Lessons from trusting Javascript crypto

Krzysztof Kotowicz, OWASP Appsec EU, June 2014

About me
• Web security researcher

• HTML5

• UI redressing

• browser extensions

• crypto

• I was a Penetration Tester @ Cure53

• Information Security Engineer @ Google

Disclaimer: “My opinions are mine. Not Google’s”. 
Disclaimer: All the vulns are fixed or have been publicly disclosed in the past.

Introduction

JS crypto history

• Javascript Cryptography Considered Harmful 
http://matasano.com/articles/javascript-
cryptography/

• Final post on Javascript crypto 
http://rdist.root.org/2010/11/29/final-post-on-
javascript-crypto/

http://matasano.com/articles/javascript-cryptography/
http://rdist.root.org/2010/11/29/final-post-on-javascript-crypto/

JS crypto history
• Implicit trust in the server to deliver the code

• SSL/TLS is needed anyway

• Any XSS can circumvent the code

• Poor library quality

• Poor crypto support

• No secure keystore

• JS crypto is doomed to fail

Doomed to fail?

https://www.mailvelope.com/https://crypto.cat/ http://openpgpjs.org/

Multiple crypto primitives libraries, symmetric &
asymmetric encryption, TLS implementation, a few
OpenPGP implementations, and a lot of user applications
built upon them. Plus custom crypto protocols.

https://www.mailvelope.com/
https://crypto.cat/
http://openpgpjs.org/

JS crypto is a fact
• Understand it

• Look at the code

• Find the vulnerabilities

• Analyze them

• Understand the limitations and workarounds

• Answer the question: can it be safe?

JS crypto vulns in the wild
• Language issues

• Caused by a flaw of the language

• Web platform issues

• Cased by the web

• Other standard bugs

• out of scope for this presentation

Language issues

Language issues matter

if (you_think_they_dont)!
 goto fail;!
! goto fail;

JavaScript in a glance
• a dynamic language

• a weakly typed language

• with prototypical inheritance

• with a global object

• and a forgiving parser

It’s a flexible language
• Code in 6 characters only!

!

!

!

!

• alert(1), obviously

[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!!
[]+[])[+!+[]]][([][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]
+!+[]+!+[]]+(!![]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+
[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[+!+[]+[+[]]]+([][[]]+[])[+!+[]]+
(![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+([![]]+[][[]])[+!
+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]]+[])[!+[]+!+[]+!+
[]]+(!![]+[])[+[]]+(!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]
+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[+!+[]+[+[]]]+(!![]+[])[+!+[]]]((![]+[])[+!+[]]+(![]+[])[!+[]+!+[]]
+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]+(!![]+[])[+[]]+(![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]
+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]]+[+!+[]]+
(!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+

[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]])()

Bit quirks
• All numbers are floats, actually  

http://www.2ality.com/2012/04/number-encoding.html

• Bit shifts are tricky

!

!

!

• “The right operand should be less than 32, but if not only the low
five bits will be used.” 
https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Operators/Bitwise_Operators

1 << 31 // -2147483648!
1 << 32 // 1!
1 << 31 << 1 // 0!
1 << 31 >> 31 // -1  
1 << 31 >>> 31 // 1. Sigh!

http://www.2ality.com/2012/04/number-encoding.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators

Weak typing
• A lot of gotchas & silent type conversions  

!

!

!

• Devs don’t use types. This matters to crypto!

// From wtfjs.com!
!
true == 'true' // true!
false == 'false'; // false!
!
Math.min() < Math.max(); // false!
!
typeof null // object!
null instanceof Object // false

http://wtfjs.com

Weak typing
• Cryptocat adventures with entropy  

http://tobtu.com/decryptocat.php

!

!

• != 64 random bytes.

• Entropy loss - 512 bits => 212 bits

-// Generate private key (32 byte random number)!
-// Represented in decimal!
+// Generate private key (64 random bytes)!
 var rand = Cryptocat.randomString(64, 0, 0, 1, 0);!
 myPrivateKey = BigInt.str2bigInt(rand, 16);

"7065451732615196458..."

http://tobtu.com/decryptocat.php

Magic properties
• Cryptocat - a multiparty chat

• You must store public key of all your chat members

• Can’t overwrite existing key

• Add public key of a new chat member:

//multiParty.receiveMessage!
if (!publicKeys[sender]) {!
 if (validate(publicKey)) {!
 publicKeys[sender] = publicKey;!
 }!
}

Magic properties
!

!

!

!

!

!

• [CVE 2013-4100] User __proto__ breaks chat for all participants

• http://www.2ality.com/2012/01/objects-as-maps.html

http://www.2ality.com/2012/01/objects-as-maps.html

Magic properties
• Python has them too!

• Kill an application by submitting a hash algorithm
__delattr__

• http://blog.kotowicz.net/2013/12/breaking-google-
appengine-webapp2.html

http://blog.kotowicz.net/2013/12/breaking-google-appengine-webapp2.html

Silent errors
!

!

• Does not throw errors

• At least it’s only harmless undefined (I‘m looking at
you, C)

a = [1];!
a[0] // 1!
a[1] // undefined. No error!

Unicode fun
• JS strings are unicode, not byte arrays

• String.charCodeAt(index) returns the numeric
Unicode value of the character

• Not a byte value!

• https://speakerdeck.com/mathiasbynens/hacking-
with-unicode

https://speakerdeck.com/mathiasbynens/hacking-with-unicode

16 snowmen attack!

• Reveals AES key by encrypting Unicode and
decrypting the result  
http://vnhacker.blogspot.com/2014/06/why-
javascript-crypto-is-useful.html

☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃

http://vnhacker.blogspot.com/2014/06/why-javascript-crypto-is-useful.html

Encrypting…
function SubBytes(state, Sbox) // state = [9740, 9796, 9743, ...] !
{!
 var i;!
 for(i=0; i<16; i++)!
 state[i] = Sbox[state[i]];!
 return state; // [undefined, undefined, ...]!
}

Implicit type coercion
!

!

!

!

!

After first round: 
state = [0, 0, …] ⊕ Round key = Round key

function MixColumns(state) { // [undefined, undefined, ...]!
 c0 = state[I(0,col)]; // c0 = undefined,....!
 state[I(0,col)] = aes_mul(2,c0) ^ aes_mul(3,c1) ^ c2 ^ c3;!
 return state!
}!
!
function aes_mul(a, b) { // 2, undefined!
 var res = 0;!
 res = res ^ b; // 0 ^ undefined = 0 :)!
}

aes_mul(2,c0) ^ aes_mul(3,c1) ^ c2 ^ c3;!
undefined ^ undefined ^ 0 ^ 0 // 0

Decrypting…
• Decrypt the ciphertext with the same key

• In last round:

!

!

!

• plaintext = key ⊕ [0x52, 0x52, …]

function SubBytes(state, Sbox) // state = [0, 0, …]!
{!
 var i;!
 for(i=0; i<16; i++)!
 state[i] = Sbox[state[i]];!
 return state; // [0x52, 0x52, …]!
}

Type coercion
CVE-2014-0092 GnuTLS certificate validation bypass  
http://blog.existentialize.com/the-story-of-the-gnutls-bug.html"

!

!

!

• C has no exceptions. Errors were reported as negative
numbers. But callers treated return value like a boolean: 
 

/* Checks if the issuer of a certificate is a!
 * Certificate Authority  
 * Returns true or false, if the issuer is a CA,!
 * or not.!
 */!
static int!
check_if_ca (gnutls_x509_crt_t cert, gnutls_x509_crt_t issuer,!
 unsigned int flags)

if (ret == 0) { /*cert invalid, abort */}

http://blog.existentialize.com/the-story-of-the-gnutls-bug.html

Language issues
• They are not unique to JavaScript

• You can overcome them!

• ES 5 strict mode 
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Functions_and_function_scope/Strict_mode

• Type enforcing - e.g. Closure Compiler  
https://developers.google.com/closure/compiler/

• Development practices: tests, continuous integration,
code reviews

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode
https://developers.google.com/closure/compiler/

Web platform issues

Web platform issues
• Javascript code runs in a JS engine…  

*Monkey, v8

• In an execution environment…  
browser renderer process, server process

• With different APIs available…  
DOM, WebCrypto, browser extension API

• With different restriction/isolation policies…  
Same Origin Policy, CSP, iframe sandbox, extension security
policies

• These issues are much more important to crypto!

XSS
• Web is full of it

• Any XSS is RCE equivalent for web

• XSS can bypass any crypto code in the same
environment

• replace a PRNG

• exfiltrate the key or plaintext

• replace the public key

• Mailvelope - DOM XSS in Gmail by sending
encrypted to the victim

• [CVE 2013-2259] Cryptocat used client side filtering of
nickname / conversation name

!

!

!

!

• Chrome extension: CSP, only UI Spoofing

• Firefox extension: XSS = RCE in the OS

RCE in non-JS crypto
• [CVE-2014-3466] A flaw was found in the way

GnuTLS parsed session IDs from ServerHello
messages of the TLS/SSL handshake. A malicious
server could use this flaw to send an excessively
long session ID value, which would trigger a
buffer overflow in a connecting TLS/SSL client
application using GnuTLS, causing the client
application to crash or, possibly, execute arbitrary
code.

Poor randomness
• Math.random() is not good for crypto

• You can recover the state cross-origin in some
browsers 
http://ifsec.blogspot.com/2012/05/cross-domain-
mathrandom-prediction.html

• Use crypto.getRandomValues() in browsers* and
crypto.randomBytes() in node.js.

• Still, Math.random() is common
* IE from 11, poor mobile browsers support

http://ifsec.blogspot.com/2012/05/cross-domain-mathrandom-prediction.html

Poor randomness
• OpenPGP.js RSA encryption padding

/**!
* Create a EME-PKCS1-v1_5 padding!
*/!
encode: function(message, length) {!
 //...!
 for (var i = 0; i < length - message.length - 3; i++) {!
 result += String.fromCharCode(random.getPseudoRandom(1, 255)); !
 }!
 return result;!
}!
!
random.getPseudoRandom: function(from, to) {!
 return Math.round(Math.random() * (to - from)) + from; !
}

Poor randomness
• [CVE-2013-4102] Cryptocat uses BOSH for XMPP

transport.  
“The session identifier (SID) and initial request
identifier (RID) are security-critical and therefore
MUST be both unpredictable and non-repeating.”
!!this.rid = Math.floor(Math.random() * 4294967295);

Non-JS randomness fail
Debian OpenSSL fiasco (2006-2008)"

• OpenSSL used uninitialized memory buffers as entropy
sources

• Debian maintainer analyzed OpenSSL with Valgrind, asked
openssl-dev about the warnings. Group said - go ahead,
just remove the calls.

• Only process ID remained in the entropy pool

• ssh-keygen - only 32K possible keys  
http://research.swtch.com/openssl

http://research.swtch.com/openssl

Timing side-channels
• Timing differences are measurable, even cross-origin

• Exploits are not remote - all code runs on the same
CPU, <iframe>s let you jump in a same thread even!

• Demonstrated by Eduardo Vela Nava 
http://sirdarckcat.blogspot.com/2014/05/matryoshka-web-
application-timing.html 
“It is possible to bruteforce an 18 digit number in
about 3 minutes on most machines.” (cross-domain!)

http://sirdarckcat.blogspot.com/2014/05/matryoshka-web-application-timing.html

Timing side-channels
• OpenPGP.js RSA decryption unpadding

!

!

!

!

!

• This needs to be constant time to avoid Bleichenbacher’s attack  
http://archiv.infsec.ethz.ch/education/fs08/secsem/
Bleichenbacher98.pdf

/**!
 * decodes a EME-PKCS1-v1_5 padding!
 */!
decode: function(message, len) {!
 if (message.length < len)!
 message = String.fromCharCode(0) + message; // branching!
 if (message.length < 12 || message.charCodeAt(0) !== 0 ||!
 message.charCodeAt(1) != 2) // branching!
 return -1; // early exit!
 var i = 2;!
 return message.substring(i + 1, message.length);!
}

http://archiv.infsec.ethz.ch/education/fs08/secsem/Bleichenbacher98.pdf

Timing side-channels

• Similar problem in Java - JSSE (RSA used in TLS)  
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/
HSS/Diss/MeyerChristopher/diss.pdf

• [CVE-2012-5081] Different error messages

• [CVE-2014-0411] Timing side-channel - random
numbers were generated only on invalid padding

http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/MeyerChristopher/diss.pdf

Compiler optimisation
• JS engine is a blackbox. Even correct constant-time code can be

optimised.  
http://stackoverflow.com/questions/18476402/how-to-disable-v8s-
optimizing-compiler

• Problems are not unique to the web:

!

!

!

• Constant-time algorithm meets timing differences in Intel DIV instruction 
https://www.imperialviolet.org/2013/02/04/luckythirteen.html

// golang.org/src/pkg/crypto/subtle/constant_time.go!
func ConstantTimeByteEq(x, y uint8) int {!
 z := ^(x ^ y)!
 z &= z >> 4!
 z &= z >> 2!
 z &= z >> 1!
 !
 return int(z)!
}

http://stackoverflow.com/questions/18476402/how-to-disable-v8s-optimizing-compiler
https://www.imperialviolet.org/2013/02/04/luckythirteen.html

Direct memory access
• Remember Heartbleed?

• Not a crypto vulnerability, but it allowed to bypass
the encryption by just reading memory

• client sends a large payload length + a tiny
payload

• no bounds check in the server

• server replies with leaked memory contents

Direct memory access
• Thankfully, JS is a memory-safe language. We have

no buffers to overflow…

Direct memory access
• Pwn2Own 2014, Firefox 28, Jüri Aedla  

“TypedArrayObject does not handle the case where ArrayBuffer
objects are neutered, setting their length to zero while still in
use. This leads to out-of-bounds reads and writes into the
JavaScript heap, allowing for arbitrary code execution.” 
https://www.mozilla.org/security/announce/2014/mfsa2014-31.html

• Pwnium 4, Chrome 33, geohot (George Hotz)  
https://code.google.com/p/chromium/issues/detail?id=351787 
 
 
 
 

var ab = new ArrayBuffer(SMALL_BUCKET);!
ab.__defineGetter__("byteLength",function(){return 0xFFFFFFFC;});!
var aaa = new Uint32Array(ab);!
// all your base are belong to us

https://www.mozilla.org/security/announce/2014/mfsa2014-31.html
https://code.google.com/p/chromium/issues/detail?id=351787

Direct memory access
• JS crypto code executes in an environment

• Browsers are an attack surface as well

• network stack

• HTML parser

• JS engine

• Exploited browser ~ malware

Browsers architecture
• Firefox - single process  

http://lwn.net/Articles/576564/

• IE - multiprocess

• Chrome - multiprocess, sandboxed 
http://www.chromium.org/developers/design-documents/sandbox

http://lwn.net/Articles/576564/
http://www.chromium.org/developers/design-documents/sandbox

Malware problem
• Any malware can circumvent standard crypto

software as well. Kernels have exploits too.

• GnuPG was bypassed by the authorities by simply
installing a keylogger.  
https://www.gnupg.org/faq/gnupg-faq.html#successful_attacks

• For JS crypto - your browser is the OS. Browser
security = host security

• There is one difference though…

https://www.gnupg.org/faq/gnupg-faq.html#successful_attacks

Application delivery
• You don’t install websites

• Code delivery and execution is transparent

• It’s a huge code execution playground, running
code separated by (hopefully) Same Origin Policy

• Few browsers have sandboxes to enforce further
restrictions

Is JS crypto doomed?
• Create perfect, XSS-free, constant time JS code

• Put in in a website, serve over HTTPS

• You’re safe until someone uses:

• a browser exploit

• a SOP bypass

Extensions 
for the rescue

Browser extension
• Not a plugin (Java, Flash, PDF reader)

• A Javascript application running in privileged execution
environment

• You need to install it

Browser extension
• Secure, signed code delivery

• Separate storage area

• Better separation from websites than just Same
Origin Policy

• Process isolation in Chrome  
http://www.chromium.org/developers/design-
documents/site-isolation

http://www.chromium.org/developers/design-documents/site-isolation

Browser extension
• Not a perfect solution!

• Chrome Extensions can share processes when
limits are hit (use Chrome App to be sure)

• XSS in extension is possible. XSS = native code
execution in Firefox  
http://www.slideshare.net/kkotowicz/im-in-ur-browser-pwning-your-stuff-
attacking-with-google-chrome-extensions

• Timings are readable

http://www.slideshare.net/kkotowicz/im-in-ur-browser-pwning-your-stuff-attacking-with-google-chrome-extensions

Open problems
• Optimisations in JS engines make timing side

channels probable

• No mlock() equivalent - secrets can be swapped to
disk

• No secure store yet (wait for WebCrypto)

• Extensions silent auto-update

• Lack of full process isolation yet

Summary
• A lot of perceived “JS crypto flaws” are present in

other languages as well

• The platform issues are much more difficult to
mitigate

• Only extension-based crypto can be secure

• Malware, as always, wins

The end
Me: 
http://blog.kotowicz.net, @kkotowicz, krzysztof@kotowicz.net

More vulns: 
https://cure53.de/pentest-report_mailvelope.pdf 
https://cure53.de/pentest-report_openpgpjs.pdf  
https://blog.crypto.cat/wp-content/uploads/2012/11/Cryptocat-2-Pentest-Report.pdf

Thanks to people who helped and inspired 
(in Math.random() order):  
Mario Heiderich, Franz Antesberger, Juraj Somorovsky, Ian
Beer, Ivan Fratric, Eduardo Vela Nava, Thai Duong, Frederic
Braun, Ben Hawkes, Daniel Bleichenbacher, Adam Langley,
Mathias Biennia

http://blog.kotowicz.net
https://cure53.de/pentest-report_mailvelope.pdf
https://cure53.de/pentest-report_openpgpjs.pdf
https://blog.crypto.cat/wp-content/uploads/2012/11/Cryptocat-2-Pentest-Report.pdf

