Biting Into the
forbidden fruit

Lessons from trusting Javascript crypto

Krzysztof Kotowicz, OWASP Appsec EU, June 2014

About me

* Web security researcher
e HTML5
e Ul redressing
* pbrowser extensions
* Crypto
* | was a Penetration Tester @ Cure53
* |Information Security Engineer @ Google

Disclaimer: “My opinions are mine. Not Google’s”.
Disclaimer: All the vulns are fixed or have been publicly disclosed in the past.

lNtroauction

JS crypto history

Javascript Cryptography Considered Harmful
http://matasano.com/articles/javascript-
cryptography/

Final post on Javascript crypto

nttp://rdist.root.org/2010/11/29/final-post-on-
javascript-crypto/

http://matasano.com/articles/javascript-cryptography/
http://rdist.root.org/2010/11/29/final-post-on-javascript-crypto/

JS crypto history

Implicit trust in the server to deliver the code
SSL/TLS is needed anyway

Any XSS can circumvent the code

Poor library quality

Poor crypto support

No secure keystore

JS crypto is doomed to fail

Doomed to fail”?

Multiple crypto primitives libraries, symmetric &
asymmetric encryption, TLS implementation, a few
OpenPGP implementations, and a lot of user applications
bullt upon them. Plus custom crypto protocols.

Mailvelope

https://crypto.cat/ https://www.mailvelope.com/ http://openpgpjs.org/

https://www.mailvelope.com/
https://crypto.cat/
http://openpgpjs.org/

JS crypto iIs a fact

Understand it

Look at the code

Find the vulnerabilities

Analyze them

Understand the limitations and workarounds

Answer the gquestion: can it be safe”

JS crypto vulns in the wild

* Language issues

 Caused by a flaw of the language
 Web platform issues

 Cased by the web
* Other standard bugs

e out of scope for this presentation

| anguage ISSues

| anguage issues matters

1f (you think they dont)
goto fail;

goto fail;

JavaScript in a glance

* a dynamic language

* a weakly typed language

e with prototypical inheritance
* with a global object

e and a forgiving parser

t's a flexible language

Code in 6 characters only!

JLCO+IDI D+ OO+ O

HUTH DI+ O+ D+

OO0+ O+ O+

MO+OCO+ IO+ D

T+ OO+ M+ 01+ 1D

T+ DI+
DE+H+I+H+ON+ O+ DM
T+ 01+ (OO0 D+

[+ T+
[+ O+ I OO DI
(DO +0++ O+ O+ (U
AT DT OO
01+ DI O+ O+ OO+ DI+ D1+
LI+ OO+ DI O+ L

11+ D)

+
<+

1+

e alert(1), obviously

+1+[]++[
+[)[+!+

01+OIDL

)[I+[]++

+II1+(

J1+(]

1+
1+ (L]
)]+

+1+

+(I[

1+

1+!+

)L

DI+

)]

1+

1+[]+!+

+1+[]+

++

DL
1+ DI+

T+ +OT+ L
)]

1+ 0+
1+ D +O1+C

1+([!
11+

(i

(L]

+

HO+ OO+]!
I+ DI O+ OO+
TI+0ID O+ O+ 0+

D0+ OIHOM+ D01+

O+ 01+ O OOD
DO+]+

D+O1FCO+ IO+

D01+ O1FOD 0+

1) gaall]
1+ (]
010

DI+ O+ +HO]+

)OI+ OFIDEHO+H I+

BIt quUIrks

o All numbers are floats, actually
http://www.2ality.com/2012/04/number-encoding.html

o Bit shifts are tricky

 “The right operand should be less than 32, but if not only the low
five bits will be used.”
https://developer.mozilla.org/en-US/docs/Web/Javascript/
Reference/Operators/Bitwise Operators

http://www.2ality.com/2012/04/number-encoding.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators

Weak typing

* A lot of gotchas & silent type conversions

true 'true’
false 'false';

Math.min() Math.max () ;

typeof null
null instanceof Object

 Devs don't use types. This matters to crypto!

http://wtfjs.com

Weak typing

e Cryptocat adventures with entropy
hitp://tobtu.com/decryptocat.php

var rand Cryptocat.randomString(64, 0, O,
myPrivateKey BigInt.str2bigInt(rand, 16);

' = 64 random bytes,

 Entropy loss - 512 bits => 212 bits

http://tobtu.com/decryptocat.php

Magic properties
Cryptocat - a multiparty chat
You must store public key of all your chat members

Can’t overwrite existing key

Add public key of a new chat member:

1f (!publicKeys[sender]) {
1f (validate(publicKey)) {

publicKeys[sender] publicKey;

}

Magic properties

dict = {'foo': 'bar', 'baz': 'bang'}
Object {foo: "bar", baz: "bang"}
dict(['foo']

"bar"

dict['bazinga']

undefined

dict['__proto__ ']

Object {}

dict['__proto__'] == true

false

dict('_proto__'] = 'bzium'
"bzium"

dict

Object {foo: "bar", baz: "bang"}
dict['_proto__ ']

Object {}

 [CVE 2013-4100] User __proto__ breaks chat for all participants

o http://www.2ality.com/2012/01/objects-as-maps.html

http://www.2ality.com/2012/01/objects-as-maps.html

Magic properties

* Python has them too!

* Kill an application by submitting a hash algorithm
__delattr__

* http://blog.kotowicz.net/2013/12/breaking-google-
appengine-webapp2.html

http://blog.kotowicz.net/2013/12/breaking-google-appengine-webapp2.html

Silent errors

a [1];

alf0]
all]

e Does not throw errors

e At least it's only harmless undefined (I'm looking at
you, C)

Unicode

JS strings are unicode, not byte arrays

String.charCodeAt(index) returns the numeric
Unicode value of the character

Not a byte value!

https://speakerdeck.com/mathiasbynens/hacking-

with-unicode

https://speakerdeck.com/mathiasbynens/hacking-with-unicode

16 showmen attack!

S888888888888888

 Reveals AES key by encrypting Unicode and
decrypting the result

nttp://vnhacker.blogspot.com/2014/06/why-

lavascript-crypto-is-useful.html

R

http://vnhacker.blogspot.com/2014/06/why-javascript-crypto-is-useful.html

Encrypting...

function SubBytes(state, Sbox)
{

var 1i;

for(1=0; i<1l6; 1)
state[1] Sbox[state[i]

return state;

Implicit type coercion

function MixColumns(state) {
cO state[I(0,col)];
state[I(0,col)] aes mul(2,c0) aes mul(3,cl) Cc2 c3;
return state

function aes mul(a, b) {
var res
res b;

aes mul(2,c0) aes mul(3,cl)
undefined undefined

After first round:
state = [0, O, ...] ® Round key = Round key

Decrypting...

* Decrypt the ciphertext with the same key

e |n |last rouna:

function SubBytes(state, Sbox)
{

var 1i;

for(1=0; 1i<1l6; 1)
state[1] Sbox[state[i1]];
return state;

}

e plaintext = key @ [0x52, Ox52, ...]

Type coercion

CVE-2014-0092 GnuTLS certificate validation bypass

http://blog.existentialize.com/the-story-of-the-gnutls-bug.html

static int
check 1f ca (gnutls x509 crt t cert, gnutls x509 crt t issuer,
unsigned int flags)

* C has no exceptions. Errors were reported as negative
numbers. But callers treated return value like a boolean:

if (ret 0) {

http://blog.existentialize.com/the-story-of-the-gnutls-bug.html

| anguage ISSues

* They are not unigque to JavaScript
* You can overcome them!

e ES 5 strict mode

https://developer.mozilla.org/en-Us/docs/Web/Javascript/Reference/
Functions_and function_scope/Strict mode

e Type enforcing - e.g. Closure Compiler
https://developers.google.com/closure/compiler/

* Development practices: tests, continuous integration,
code reviews

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode
https://developers.google.com/closure/compiler/

Web platform issues

Web platform issues

Javascript code runs in a JS engine...
“Monkey, v8

In an execution environment...
browser renderer process, server process

With different APIs available...
DOM, WebCrypto, browser extension API

With different restriction/isolation policies...
Same Origin Policy, CSP, iframe sandbox, extension security
policies

These issues are much more important to crypto!

XSS

 Web is full of it
* Any XSS is RCE equivalent for web

XSS can bypass any crypto code in the same
environment

e replace a PRNG
o exfiltrate the key or plaintext

e replace the public key

* Mailvelope - DOM XSS in Gmail by sending
encrypted to the victim

2 Mailvelope Test 0011 -
o > B

+Mario Suche Bllder

Google '

Gmail ~

Posteingang
Markiert
Wichtig

- - =

Rob Mann

¢ Gareth TESTING
<s>000</8>"><s. ..
config.inc
Mario Heiderich

>
mail.google.com D ®:
Maps Play YouTube News Gmall Drive Kalender Mehr ~
“ Mario Heiderich
“ a8 i) o - ® - Mehr - 1 von 11
Mailvelope Test 0011 Pos loeaa 0&a8
JavaScript-Warnm X
@ Mario Helderich —BEGIN PGP MES :) Minuten)
Q Mario Helderich <mrkplst@googlemall.¢ 0 -~ v

nmich «

Password

User ID: “aler(1)7™><s>000" <nvwkpist@@gmai.com>
KeylD: E7C15AE29EC7C006

rrnee

- |l X
@ O =
+ Mitteilen g -
> o B

 [CVE 2013-2259] Cryptocat used client side filtering of

nickname / conversation name

— chrome://cryptocat/content/data/index.html -C 9 aeLdn -

[object window]

chrome://cryptocat/content/data/index. html

N
3

oK

* Chrome extension: CSP, only Ul Spoofing

e Firefox extension: XSS = RCE in the OS

RCE In non-JdS crypto

 |[CVE-2014-3466] A tlaw was found in the way
GnuTLS parsed session IDs from ServerHello
messages of the TLS/SSL handshake. A malicious
server could use this flaw to send an excessively
long session ID value, which would trigger a
buffer overflow in a connecting TLS/SSL client
application using GnuTLS, causing the client
application to crash or, possibly, execute arbitrary

code.

POor randomness

Math.random() is not good for crypto

You can recover the state cross-origin in some
browsers
http://ifsec.blogspot.com/2012/05/cross-domain-
mathrandom-prediction.html

Use crypto.getRandomValues() in browsers™ and
crypto.randomBytes() in node.js.

Still, Math.random() is common

“|IE from 11, poor mobile browsers support

http://ifsec.blogspot.com/2012/05/cross-domain-mathrandom-prediction.html

POor randomness

e OpenPGP.js RSA encryption padding

encode: function(message, length) {

for (var i 0; 1 length message.length 3; i++) {
result String.fromCharCode (random.getPseudoRandom(1l, 255));

}

return result;

}

random.getPseudoRandom: function(from, to) {
return Math.round(Math.random() (to from)) from;

}

POor randomness

e |[CVE-2013-4102] Cryptocat uses BOSH for XMPP
fransport.
“The session identifier (SID) and initial request
identifier (RID) are security-critical and theretore
MUST be both unpredictable and non-repeating.”

this.rid Math.floor (Math.random() 4294967295);

Debian OpenSSL fiasco (2006-2008)

OpenSSL used uninitialized memory buffers as entropy
sources

Debian maintainer analyzed OpenSSL with Valgrind, asked
openssl-dev about the warnings. Group said - go ahead,
just remove the calls.

Only process ID remained in the entropy pool

ssh-keygen - only 32K possible keys
http://research.switch.com/openssl

http://research.swtch.com/openssl

Timing

side-channels

* TIming differences are measurable, even cross-origin

* EXploits are not remote - all code runs on the same
CPU, <iframe>s let you jump in a same thread even!

 Demonstrated by

Eduardo Vela Nava

http://sirdarckcat.blogspot.com/2014/05/matryoshka-web-

application-timing.htm

‘It Is possible to b
about 3 minutes o

ruteforce an 18 digit number in

N Mmost machines.” (cross-domain!)

http://sirdarckcat.blogspot.com/2014/05/matryoshka-web-application-timing.html

Timing side-channels

 OpenPGP.js RSA decryption unpadding

decode: function(message, len) {
1f (message.length len)
message String.fromCharCode(0) message;

1f (message.length 12 message.charCodeAt(0)
message.charCodeAt (1) 2)
return -1;
var 1 23
return message.substring(1i 1, message.length);

* This needs to be constant time to avoid Bleichenbacher’s attack
http://archiv.infsec.ethz.ch/education/fs08/secsem/
Bleichenbacher98.pdf

http://archiv.infsec.ethz.ch/education/fs08/secsem/Bleichenbacher98.pdf

Timing side-channels

e Similar problem in Java - JSSE (RSA used in TLS)
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/
HSS/Diss/MeyerChristopher/diss.pdf

 [CVE-2012-5081] Different error messages

 [CVE-2014-0411] Timing side-channel - random
numbers were generated only on invalid padding

http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/MeyerChristopher/diss.pdf

Compiler optimisation

e JS engine is a blackbox. Even correct constant-time code can be
optimised.
http://stackoverflow.com/questions/18476402/how-to-disable-v8s-
optimizing-compiler

* Problems are not unique to the web:

func ConstantTimeByteEq(x, y uint8) int {
Y)

return int(z)

e Constant-time algorithm meets timing differences in Intel DIV instruction
https://www.imperialviolet.org/2013/02/04/luckythirteen.html

http://stackoverflow.com/questions/18476402/how-to-disable-v8s-optimizing-compiler
https://www.imperialviolet.org/2013/02/04/luckythirteen.html

e Remember Heartbleed?

* Not a crypto vulnerability, but it allowed to bypass
the encryption by just reading memory

* client sends a large payload length + a tiny
payload

e NO bounds check In the server

e server replies with leaked memory contents

Direct memory access

* Thankfully, JS is a memory-safe language. We have
no buffers to overtlow...

Direct memory access

e Pwn20wn 2014, Firefox 28, Juri Aedla
“TypedArrayObject does not handle the case where ArrayBuffer
objects are neutered, setting their length to zero while still Iin
use. This leads to out-of-bounds reads and writes into the

JavaScript heap, allowing for arbitrary code execution.”
https://www.mozilla.org/security/announce/2014/mfsa2014-31.html|

 Pwnium 4, Chrome 33, geohot (George Hotz)

https://code.google.com/p/chromium/issues/detail?id=351787

var ab new ArrayBuffer (SMALL BUCKET);
ab. defineGetter ("byteLength",function(){return OXFFFFFFFC;});

var aaa new Uint32Array(ab);

https://www.mozilla.org/security/announce/2014/mfsa2014-31.html
https://code.google.com/p/chromium/issues/detail?id=351787

Direct memory access

e JS crypto code executes in an environment
* Browsers are an attack surface as well

* network stack

e HIML parser

e JS engine

 Exploited browser ~ malware

Browsers architecture

Firefox - single process
http://lwn.net/Articles/576564/

IE - multiprocess

Chrome - multiprocess, sandboxed

http://www.chromium.org/developers/design-documents/sandbox

Renderer: Renderer: Renderer:
a.com b.com c.com
Sandbox Sandbox Sandbox

Browser Process

http://lwn.net/Articles/576564/
http://www.chromium.org/developers/design-documents/sandbox

Malware problem

Any malware can circumvent standard crypto
software as well. Kernels have exploits too.

GnuPG was bypassed by the authorities by simply

installing a keylogger.
https://www.gnupg.org/fag/gnupg-fag.htmi#successful attacks

For JS crypto - your browser is the OS. Browser
security = host security

There is one difference though...

https://www.gnupg.org/faq/gnupg-faq.html#successful_attacks

Application delivery

You don't install websites
Code delivery and execution is transparent

It's a huge code execution playground, running
code separated by (hopefully) Same Origin Policy

Few browsers have sandboxes to enforce further
restrictions

s JS crypto doomed”?

* Create perfect, XSS-free, constant time JS code
* Putinin a website, serve over HTTPS
* You're safe until someone uses:

e a browser exploit

* a SOP bypass

Extensions
for the rescue

Browser extension

e Not a plugin (Java, Flash, PDF reader)

e A Javascript application running in privileged execution
environment

e You need to install it

. Browser |
1 o Yo S

Web Page [DOM &] g[JavaSC,,pt] Extension

chrome:// zone or
I browser zone

Browser extension

Secure, signed code delivery
Separate storage area

Better separation from websites than just Same
Origin Policy

Process isolation in Chrome
http://www.chromium.org/developers/design-
documents/site-isolation

http://www.chromium.org/developers/design-documents/site-isolation

Browser extension

* Not a perfect solution!

 Chrome Extensions can share processes when
[imits are hit (use Chrome App to be sure)

e XSS in extension is possible. XSS = native code

execution In Firefox

http://www.slideshare.net/kkotowicz/im-in-ur-browser-pwning-your-stuff-
attacking-with-google-chrome-extensions

* [Imings are readable

http://www.slideshare.net/kkotowicz/im-in-ur-browser-pwning-your-stuff-attacking-with-google-chrome-extensions

Open problems

Optimisations in JS engines make timing side
channels probable

No mlock() equivalent - secrets can be swapped to
disk

No secure store yet (wait for WebCrypto)
Extensions silent auto-update

Lack of full process isolation yet

summary

A lot of perceived “JdS crypto flaws” are present In
other languages as well

The platform issues are much more difficult to
mitigate

Only extension-based crypto can be secure

Malware, as always, wins

The end

Me:
http://blog.kotowicz.net, @kkotowicz, krzysztof@kotowicz.net

More vuins:

https://cure53.de/pentest-report_mailvelope.pdf
https://cure53.de/pentest-report_openpgpijs.pdf
https://blog.crypto.cat/wp-content/uploads/2012/11/Cryptocat-2-Pentest-Report.pdf

Thanks to people who helped and inspired

(in Math.random() order):

Mario Heiderich, Franz Antesberger, Juraj] Somorovsky, lan
Beer, lvan Fratric, Eduardo Vela Nava, Thai Duong, Frederic
Braun, Ben Hawkes, Daniel Bleichenbacher, Adam Langley,
Mathias Biennia

http://blog.kotowicz.net
https://cure53.de/pentest-report_mailvelope.pdf
https://cure53.de/pentest-report_openpgpjs.pdf
https://blog.crypto.cat/wp-content/uploads/2012/11/Cryptocat-2-Pentest-Report.pdf

