
DevOps, CI, APIs, Oh My!
 Security Gone Agile

Matt Tesauro
AppSec EU 2014

About Me

Who am I?

matt.tesauro@rackspace.com

matt.tesauro@owasp.org

Racker since October 2011

Rackspace’s Product Security Group

Product Security Senior Engineer

Work with developers and QE

Former OWASP International Foundation Board

 Member and Treasurer

Project Leader of

 OWASP Live CD / OWASP WTE

 OWASP OpenStack Security Project

DevOps, CI, APIs, Oh My!

• The combination of traditional development activities with operations and
testing (QA/QE)

• Collaboration, communication and integration is key

• Agile development model (sprints, scrum, stories…)

• Release coordination and automation

"DevOps" is an emerging set of principles, methods and practices for
communication, collaboration and integration between software
development (application/software engineering) and IT operations
(systems administration/infrastructure) professionals.

A quick Overview of DevOps

CI, CD, CD, TDD and API

CI == Continuous Integration

CD == Continuous Deployment

CD == Continuous Delivery

TDD == Test Driven Development

API == Application Programming Interface

• Cycle time for software is getting
shorter

• Continuous delivery is a goal

• Scanning windows are not viable

• First mover / first to market
advantage

The Problem

The Problem – or at least more problems

• Traditional software development left little time to test

• DevOps, Agile and Continuous Delivery squeeze those windows

even more

• New languages and programming methods aren’t making

 this better

• Growth of interpreted languages with loose typing

hurts static analysis efforts

• Few automated tools to test APIs especially

RESTful APIs

• Little time for any testing, manual testing is doomed

• Automated software
testing

• Automated operational
infrastructure

• Automated security
testing

THE SOLUTION

Think like a developer
Sprints break software into little pieces…

• Break your testing into little pieces

• Use your threat model to know the crucial bits to test

Long and short running tests

• Testing time drives testing frequency

• Code for tests needs to be optimized

Smoke test versus full regression test

• Smoke test early and often

• Full regression tests on regular intervals

Maximize what you’ve got
Make the most of your frameworks

•Embrace, understand and fill gaps where necessary

Make the best use of your time…

• Make tests easily repeatable

• Make tests easy to understand

• Make tests abstract and combine-able

• Ala carte tests for mixing and matching

• Think about the Unix pipe | and its power

Under the constraints of DevOps, Continuous Deployment

Your testing has to be nimble

Dare I say…Agile

In TDD, you know your code works

when the tests pass

In TD(S), you know your app has met

the baseline when the tests pass

Test Driven Development Security

A time to morn...

5 Stages of Grief

This agile thing is a fad...

Waterfall is the only way to produce

 quality software...

5 Stages of Grief

There's no way I can test in that time

 frame...

If I see another freaking sticky note...

5 Stages of Grief

Well, I think I can test some of it in

 two days...

I guess I can test it after its deployed

 to prod...

5 Stages of Grief

After that launch, I updated my

 LinkedIn profile...

Game over man, GAME OVER...

 (Thanks Aliens)

5 Stages of Grief

So when can you add a story to work

 on that auth regression...

After reviewing your deployment

 recipe, we filed a pull request to fix...

• Securing Infrastructure

• Securing Apps and APIs

• Securing Code

Fly through those 5 stages by addressing...

 Securing Infrastructure

Automating Infrastructure

• Declarative configuration language
• Plain-text configuration in source control
• Fully programmatic, no manual interactions

Chef for example

1. Solo

2. Server

3. Hosted

4. Private Hosted Node
Node

Node
Node

Node

Node
Node

Node
Node

Node

Node
Node

Node
Node

Node

Sys
Admin

Server / Hosted / Private

Cookbooks, Stacks, Playbooks, ...

• Most have methods to
bundle / share automation
routines

• You will have to write your
own / customize

• Good place to spend
security cycles
-Merge patches upstream for
extra points.

Grouping & Tagging

• Tagging your
servers applies the
required set of
automation

• A base set of for all
servers

• Each server can
have multiple tags

• Map tags to security
requirements

Node
Node

Node
Node

DB

Node
Node

Node
Node

Cache

Node
Node

Node
Node

Web

Apache

Monitoring

MySql

Memcache

Inspector – you need one
• For each group and/or tag

• Review the recipe

• Hook provisioning for post
 deploy review

• Focus on checking for code compliance
-Not perfection, bare minimums

• Can include multiple facets
-Security

-Scalability

-Compliance

Agent – one mole to rule them all

• Add an agent to the standard deploy

• Read-only helps sell to SysAdmin

• Looks at the state of the system

• Reports the state to the “mothership”

• Add a dashboard to visualize state of infrastructure

• Change policy, servers go red

• Watch the board go green as patches roll-out

• Roll your own or find a vendor
 Mozilla MIG

Turn Vuln scanning on its head
• Add value for your ops teams

• Subscribe and parse vuln emails for key software

• Get this info during threat models or config mgmt

• Provide an early warning and remove panic from
software updates

• Roll your own or find a vendor

• Gmail + filters can work surprisingly well

• Secunia VIM covers 40K+ products

• Reverse the scan then report standard

 Securing Apps & APIs

Findings directly to bug trackers
• PDFs are great, bugs are better

• Work with developer teams to submit bugs

• Security category needs to exist

• Bonus points if the bug tracker has an API

• Security issues are now part of the normal work flow

• Beware of death by backlog

• Occasional security sprints

• Learn how the team treats issues

• ThreadFix is nice for metrics and pumping issues into
issue trackers - http://code.google.com/p/threadfix/

For the reticent: nag, nag, nag
• Attach a SLA to each severity level for findings

• Remediation plan vs Fixed

• “Age” all findings against these SLAs

• Politely warn when SLA dates are close

• Walk up the Org chart as things
 get older

• Bonus points for dashboards and
 bug tracker APIs

• Get management sold first

Reports = Findings + Automation
• Consider markup for findings

• Markdown, Wiki Text, asciidoc

• Pandoc to convert to whatever

• HTML, PDF, .doc, .odt, ...

• Keep testers writing the least possible

• Template and re-use boiler plate items

• New finding == new template for next time

• Web app to keep things consistent

• Create your own or maybe Dradis

Leverage existing consistencies
• Requires consistent (generally automated) input

• Find these and write some scripts

• Automate the drudgery

• Examples:

• Automate finding/bug submission

• Automate report PDF generation

• API documentation to basic testing harness

• Sec tool output – combine and convert

 Securing Code

Start with the developers
• Finding details have to be detailed enough to:

• Reproduce the issue after 6 months

• Allow QE to test the issue

• Allow developers to find/fix the issue

• Consider quick and dirty scripts to reproduce issue

• Script to abuse an API

• Web page of reflective XSS findings

• Gauntlt - http://gauntlt.org/

• Once findings start flowing, look for training requests

Cherry pick what you look at
• Threat Models are your friends

• Focus on weak, unclear or suspicious areas

• Focus on connections with external systems

• Focus on format translations (XML to JSON)

• When code changes in those areas,

• Red flag it for review

• Change +2 to +3 to before accepting pull request

• Use search features in source code management

• Start a list of problematic methods, calls, etc

No False Positive, period.

• If you can automate code review, you still must triage

• 1 false positive == 100 valid bugs

• If results aren't actionable, fail

• Stick to diff analysis

• Threat Modeling + “Scary Parts” + Code diffs
 == Quick triage of code changes

• Automate where you can, iterate until you're happy

• Need to build cred points with the dev teams

Quiet is better then wrong
• Hire or befriend developers

• Need to speak their language, not security's

• Suggest requirements not implementation

• Mitigation suggestions either generic or in the
 language the app is written in

• Remember: Fast deploys also means fast fixes

• Trying to shrink any vuln window not eliminate

• Be prepared to retest / verify fix quickly

What is Rackspace's
Product Security doing?

Securing Infrastructure
• Rack has Chef, Puppet, Salt and Ansible, depending on
the team

• Reviewing the deployment scripts

• Validating them with external vuln scans

• Re-checks after bug fixes

• Rack is using CloudPassage as a “mole” for some
 deployments

• Also have some mole-like agents for one-offs

• Rack has been conducting threat models ++ and using
that info to watch for vulnerabilities

Securing Apps and APIs
• Product Security finding workflow

• PS team member finds an issue

• Documents it in Test Tracker app

• Pushed finding(s) to ThreadFix

• ThreadFix integrates with bug trackers

• Metrics are driven off the ThreadFix database

• We're re-implementing the nag, err reminder script for
 the new workflow

• Using asciidoc markup for findings – easily creates
 PDFs, HTML, doc, reports based on templates

Securing Code
• Rack is using Veracode if the language is supported

• Self-service for the dev teams

• Jenkins integration for submitting code to scan

• API automation to pull findings into our workflow

• PS team produces detailed finding blocks

• Creates quick re-test scripts ad-hock

• PS team holds trainings and has e-learning modules

• PS team works with devs daily

• Loaned to teams, attend stand-ups, …

• PS “Dev Days” - team works on our automation

Key take aways
• Automate, automate, automate

• Look for “paper cuts” and fix those first

• Finding workflow

• Figure this out and standardize / optimize

• Create systems which can grow organically

• App is never done, its just created to easily be
 added to over time

• Finding blocks become templates for next time

• Learn to talk “dev”

Change is here and more is coming...

"Whosoever desires
constant success must
change his conduct with the
times."

— Niccolo Machiavelli

 THANK YOU

 Questions?

	PowerPoint Presentation
	About Me
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

